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Abstract

The Common-Reflection-Surface Stack was origi-
nally introduced as a data-driven method to simu-
late zero-offset sections from 2-D seismic reflection
pre-stack data. The noteworthy results received for
various synthetic and real data examples encour-
aged us to transfer the approach to more general
problems, namely the simulation of finite-offset sec-
tions for 2-D pre-stack data as well as the simula-
tion of zero-offset volumes for 3-D data. In this con-
tribution, we focus on these generalizations of the
Common-Reflection-Surface Stack and briefly indi-
cate implementation strategies for the zero-offset
simulation in 3-D and the finite-offset simulation
in 2-D.

Introduction

The Common-Reflection-Surface (CRS) Stack was
introduced by Miiller (1998) and Miiller et al.
(1998) as a data-driven zero-offset (ZO) simulation
method for 2-D that does not require an explicit
knowledge of the macro velocity model. The under-
lying model assumptions of the CRS stack method
are more general than the models of, e. g., Kirchhoff
migration or normal moveout/dip moveout/stack
which are based on diffractors or ZO isochron seg-
ments in the subsurface, respectively. The CRS
stack assumes the subsurface to be set up by reflec-
tor segments with arbitrary location, orientation,
and curvature. Obviously, this subsurface model is
more appropriate to describe reflectors in the sub-
surface than any other method based on a less gen-
eral approach.

A model-based application of the CRS stack
is hardly applicable as it requires a detailed de-
scription of the model including all interfaces—a
smooth macro velocity model is not sufficient for
this task. However, in the scope of paraxial zero-
order ray theory, the three properties of the re-
flector segment are associated with a set of wave-
field attributes that represent propagation direc-
tions and curvatures of certain hypothetical wave-
fronts. With these wavefield attributes, an ana-
lytic approximation of the kinematic reflection re-
sponse of the reflector segment can be derived. This
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approximate response, in the following also called
CRS stacking operator, and its associated wavefield
attributes can be directly determined from the pre-
stack data by means of coherence analysis. In other
words, the optimum CRS stacking operator for a
particular ZO sample to be simulated can be de-
termined in a data-driven way without the need to
know the actual location, orientation, and curva-
ture of the corresponding reflector segment. Thus,
the CRS stack approach implies a generalization
of the well-known velocity analysis. However, in-
stead of only one wavefield attribute, the stacking
velocity,! the CRS stack provides an entire set of
wavefield attributes that parameterize the subsur-
face model and serve for various applications.

Applications of the CRS stack for the simula-
tion of 2-D ZO sections can be found in Mann et
al. (1999) and Jager et al. (2001). Further improve-
ments of the “classic” CRS stack for 2-D, namely
the handling of conflicting dip situations, were in-
troduced by Mann (2001).

3-D zero-offset simulation

For the ZO case, the reflector segment’s proper-
ties and the associated wavefield attributes are re-
lated to each other by two hypothetical experi-
ments. For ZO, we assume only unconverted pri-
mary events with normal incidence on the reflecting
interface. In this case, the up-going and down-
going ray branches coincide. The up-going ray
branch is called the normal ray in the following.
For the first experiment, a point source is placed at
the normal incidence point (NIP) of the normal ray
on the reflector segment. The wavefront emanat-
ing from this experiment, the so-called NIP wave,
propagates along the normal ray and emerges at the
acquisition surface with well-defined curvature and
propagation direction. In the second experiment, a
simultaneous excitation of the entire reflector seg-
ment (exploding reflector experiment) is performed
to obtain the so-called normal wave. Again, a wave-
front propagates along the normal ray and emerges
with a certain curvature and the same propagation
direction as in the first experiment.

For the 2-D case, both curvatures as well
as the propagation direction can be expressed as

ITn 3-D, the stacking velocity in general depends on the
azimuth.



Figure 1: Hypothetical experiments yielding the wavefield attributes for the 3-D CRS stack for ZO. The
normal ray (bold blue line) connects the normal incidence point on the second interface (brown grid) with
the acquisition surface (brown plane). The red and green surfaces represent the emerging NIP and normal
wavefronts, respectively, for three different instances of time.

scalars. Thus, we receive three wavefield attributes
for this simplest case. The 2-D ZO case was thor-
oughly discussed by Mann et al. (1999) and Jager et
al. (2001). These concepts can be immediately gen-
eralized to the 3-D case by performing the same hy-
pothetical experiments as in 2-D. Some snapshots
of the emerging wavefronts are displayed in Fig-
ure 1 for a model consisting of three homogeneous
layers. Obviously, the curvatures can no longer be
described by scalars but take the form of 2 x 2 ma-
trices. The propagation direction can now be de-
scribed by a unit vector with three components or,
more convenient, by its projection onto the acqui-
sition surface. Considering the symmetry of the
curvature matrices, we come up with a set of eight
wavefield attributes. Nevertheless, the hyperbolic
CRS stacking operator formally remains the same
as for the 2-D case:
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The matrices A and B depend on the curvatures of
the normal and the NIP wave, respectively, and the
projected propagation direction w,. The vectors
m and h denote the relative midpoint displacement
and the half offset, respectively. As in the 2-D case,

to is the traveltime to be simulated, and v denotes
the near-surface velocity.

To fit the optimum stacking operator to an
actual reflection event, a global optimization in
an eight-dimensional parameter domain is required.
However, the computational effort for such an op-
timization is unacceptable. Similar to the imple-
mentation strategy for 2-D (see, e.g., Jager et al.,
2001), the eight-parameter problem can be split
into separate optimizations with less parameters.
Among other strategies, one way to solve this prob-
lem is to decompose it into a set of 2-D problems:
in case of sufficient azimuthal coverage in the pre-
stack data, the CRS stack for 2-D can be applied in-
dependently for lines with three different azimuths.
The 3 x 3 wavefield attributes from this approach
can be combined to the eight wavefield attributes
in Equation (1).

In case of poor azimuthal coverage, the cur-
vature of the NIP wavefront cannot be fully deter-
mined because of the lack of information in the ac-
quired data: if, e. g., only one small azimuth range
is covered, the five-dimensional (¢,m,h) data do-
main is virtually four-dimensional as all half-offset
vectors h are almost parallel. An additional as-
sumption, e.g., spherical NIP wavefronts, is re-
quired for a complete description of the CRS stack-
ing operator.
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Figure 2: Hypothetical experiments yielding the wavefield attributes for the 2-D CRS stack for FO. The
FO ray (bold green line) connects the reflection point on the second interface with the acquisition surface.
The blue lines represent the a) CS and b) CMP wavefronts, respectively, for different instances of time. The
propagation directions along the FO ray are given by s and B¢ at the shot and the receiver, respectively.
Ki, K5, and K3 denote the wavefront curvatures at the indicated locations.

2-D finite-offset simulation

For ZO simulation, we considered rays with coinci-
dent up-going and down-going ray branches. How-
ever, in case of finite offset (FO) and/or converted
waves, the two ray branches no longer coincide.
However, the described two hypothetical experi-
ments with NIP and normal wavefronts provide
only information about the reflector segment and
the propagation along the normal ray. Thus, differ-
ent hypothetical experiments are required to asso-
ciate the reflector segment’s properties with wave-
field attributes in the time domain—these experi-
ments have to provide information about both ray
branches of the FO ray.

Appropriate hypothetical experiments for the
FO case were introduced by Zhang et al. (2000).
The first experiment is the so-called common-shot
(CS) experiment? for which a point source is placed
in the shot point of the considered FO ray. The
CS wavefront propagates along the down-going ray
branch, is reflected at the reflector segment, and
propagates back to acquisition surface along the
up-going ray branch. This experiment defines three
wavefield attributes, namely the curvature of the
wavefront K; emerging at the receiver and the
propagation direction along the FO ray at the
source and the receiver, respectively. The prop-

2«Common” refers to the paraxial rays in the vicinity of
the central FO ray.

agation directions can be described by the angles
between the FO ray branches and the acquisition
surface normal. The CS experiment is depicted in
Figure 2a for a model consisting of three homoge-
neous layers.

The second experiment, the so-called
common-midpoint (CMP) experiment?, is more
difficult to explain: the initial curvature of the
wavefront starting at the source is now no longer
zero (as in the CS experiment) but takes a finite
value K,. This wavefront also propagates along
the FO ray via the reflecting interface to the
receiver and emerges with the curvature K3 (see
Figure 2b). The propagation direction along the
FO ray is the same as for the CS experiment.
Thus, we come up with a a set of five wavefield
attributes for the FO case. For offset zero, the
number of attributes again reduces to three: the
two angles, Bs and B¢, coincide and the three
curvatures, K;, K5, and K3, can be expressed in
terms of the two curvatures related to the normal
and NIP wave experiment introduced for the ZO
case.

The hyperbolic approximation of the kine-
matic reflection response of the reflector segment
for FO in terms of the five wavefield attributes is
given in Equation (2). (%o, o, ho) defines the FO
sample to be simulated, whereas z,, and h denote
the midpoint and half-offset coordinates of the con-
tributing traces. The near-surface velocities at shot
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and receiver are given by vg and vg, respectively.
Similar to the ZO case, the search for these at-
tributes can be performed in separate steps and
specific gathers. In each gather, the CRS stacking
operator is a two-parameter hyperbola. We deter-
mine two parameters in the CMP gather, two in
the common-offset (CO) gather, and the last one
in the CS gather (the second CS parameter is not
independent).

The presented approach for the simulation of
2-D FO sections can be generalized to the 3-D case
by performing the same hypothetical experiments.
As for the ZO case, the propagation directions are
then given by two component vectors, whereas the
curvatures are symmetric 2 x 2 matrices. This
yields a total of 13 wavefield attributes. The de-
velopment of efficient strategies to determine these
attributes remains as a future research topic.

As already indicated above, the CRS stack for
FO simulation can also handle converted waves. In
this case, the near-surface velocities at shot and
receiver, vg and wvg, refer to the respective wave

types.

Conclusions

The CRS stack method, originally introduced for
the simulation of 2-D ZO sections, has been gen-
eralized for the simulation of 3-D ZO sections as
well as 2-D FO sections. For an efficient imple-
mentation, the 3-D ZO CRS stack can, e.g., be
decomposed to separate 2-D ZO problems. An im-
plementation strategy for the 2-D FO CRS stack
was discussed. Its generalization to 3-D remains as
subject for future research.

The data-driven simulation of FO sections
opens up new possibilities for various applications.
As an example, the FO CRS stack can be used to
simulate a set of FO sections with high signal-to-
noise ratio which are well suited as input for tomo-
graphic methods.
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