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Summary

The simulation of a zero-offset stack section from multi-
coverage seismic reflection data for 2-D media is a widely used
seismic reflection imaging method that reduces the amount
of data and enhances the signal-to-noise ratio. The aim of
the common-reflection-surface stack is not only to provide a
well-simulated zero-offset stack section but also to determine
certain attributes of hypothetical wavefronts at the surface
useful for a subsequent inversion.

The main advantage of the common-reflection-surface stack is
the use of analytical formulae that describe the kinematic reflec-
tion moveout response for inhomogeneous media with curved
interfaces. These moveout formulae are valid for arbitrary shot-
receiver pairs with respect to a common reference point and do
not depend on the macro velocity model. An analytic reflection
response that fits best to an actual reflection event in the multi-
coverage data set is determined by coherency analysis.

We applied the common-reflection-surface stack to various syn-
thetic and real data sets. For synthetic data sets, i. e. for a given
model, data-derived as well as model-derived (forward calcu-
lated) wavefront attributes were computed. This enables us
to verify the wavefront attributes determined by the common-
reflection-surface stack exposing a wide agreement with the ex-
pected results. For real data sets we compare conventional stack-
ing results and the common-reflection-surface stack.

Introduction

Many conventional imaging methods require a sufficiently accu-
rate macro velocity model to yield correct results. To calculate
the respective operators (e. g. the stacking trajectories for dip
moveout (DMO) correction or traveltime surfaces associated
with hypothetical diffractors for pre-stack migration (PSM))
it is in addition necessary to perform ray tracing to obtain the
traveltimes.

Our aim is to determine appropriate 2-D stacking operators with-
out the knowledge of a macro velocity model and, consequently,
without ray tracing. This approach is based on ideas of de Baze-
laire (1988) and Berkovitch et al. (1994).

The “best” stacking operator is determined by means of co-
herency analysis (Taner and Koehler, 1969): we test a set of
different stacking operators for the highest coherence obtained
along the respective operator in the input data set.

For homogeneous models the stacking operator is the kinematic
multi-coverage response of a circular reflector segment in the
subsurface, thecommon reflection surface(CRS). This response
can be described by means of three parameters: the reflector
segment's location, orientation, and curvature. Performing two

hypothetical experiments with sources on the CRS yields wave-
fronts associated with two so-calledeigenwaves(Hubral, 1983).
These wavefronts would be observed at the surface with well-
defined attributes, namely the angles of emergence (which co-
incide for both eigenwaves) and the respective curvatures of the
two emerging hypothetical wavefronts. In other words, the com-
mon angle of emergence and the two curvatures uniquely define
the considered three-parametric circular reflector segment and
its multi-coverage reflection response.

Moving to the more general case of inhomogeneous models,
these wavefront attributes can still be used to define the stack-
ing operator assuming the emerging hypothetical wavefronts to
be circular in a certain vicinity of the surface location under con-
sideration.

Theory

The two hypothetical experiments providing the wavefronts of
the eigenwaves are illustrated in Figures 1 and 2 for a model
with three homogeneous layers. We consider a point R on the
second interface associated with a normal incidence ray (shown
as bold blue line) emerging at locationx0 on the surface.

One eigenwave is obtained by placing a point source at R that
produces the so-called upgoingnormal incidence point(NIP)
wave (Figure 1, wavefronts depicted in blue). An exploding re-
flector experiment yields the second upgoing eigenwave called
normal (N) wave. The wavefronts are again depicted in blue
(Figure 2). In a vicinity ofx0 both wavefronts are approximated
by circles with the radii of curvatureRNIP (shown in green) and
RN (shown in red), respectively.

The CRS stacking operator can be derived in different ways, e. g.
according to the geometrical approach of H¨ocht (1998) which
yields a parametric representation of the stacking operator. The
parameters are the angle of emergenceα of the normal incidence
ray, the radius of curvatureRNIP of theNIP wave, and the radius
of curvatureRN of thenormalwave.

However, for irregular acquisition geometries an explicit repre-
sentation of the stacking operator is more convenient. A hyper-
bolic second order Taylor expansion, which can also be derived
by means of paraxial ray theory (Schleicher et al., 1993; Tygel
et al., 1997), reads
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The half-offset between source and receiver is denoted withh,
whereasxm denotes the midpoint between source and receiver.
The only required model parameter is the near surface velocity



Common-Reflection-Surface Stack

-0.8

-0.6

-0.4

-0.2

0

0.2

0.6 0.8 1 1.2 1.4 1.6

D
ep

th
 [k

m
]

Distance [km]

R

x0
RNIP

Fig. 1: Hypothetical experiment providing theNIP wave produced by a point
source located at point R. The wavefronts are depicted in blue, the circular approx-
imation in green. The normal incidence ray (bold blue line) is reflected at point
R.

v0. The respective sample of the ZO trace to be simulated is
defined by(t0;x0).

According to Ursin (1982) and our own experience with dif-
ferent approximations of the CRS stacking operator the hyper-
bolic approximation oft2 given above is more appropriate than
a parabolic approximation oft (Schleicher et al., 1993). A
double square root representation is also possible as shown by
Berkovitch et al. (1994).

The proposed strategy can be applied to complex media. In the
presented form it is based on ZO rays with normal incidence on
the reflector. Furthermore, the CRS stacking operator is only
valid in the vicinity of the ZO ray. With regard to ray theory this
concerns the paraxial rays of the (central) ZO ray.

CRS Stack

For each sample(t0;x0) in the stack section, i. e. the zero-offset
(ZO) section to be simulated, we have to determine the stacking
parameter triple(α;RNIP;RN) that yields the stacking operator
that fits best to an event in the multi-coverage data set. This is
done by means of coherency analysis of the stacking operator
with the measured data.

To avoid the time-consuming search for all three parameters
at a time, three one-parametric searches are done. Firstly, a
one-parametric search is performed to determine the squared
stacking velocityv2

NMO = 2v0 RNIP=(t0 cos2 α) in the common
midpoint (CMP) gathers. Secondly, the angle of emergence is
scanned in the output section of the first search step (i. e. the
CMP stacked section) in a first order approximation. Thirdly,
in a second order approximation the radius of curvatureRN of
the normal wave is been searched for. This yields all three
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Fig. 2: Hypothetical experiment providing thenormalwave generated by an ex-
ploding reflector experiment. The wavefronts are depicted in blue, the circular
approximation in red. The normal incidence ray (bold blue line) is reflected at
point R.

parameters for each time sample. Wherever the coherence ex-
ceeds a given threshold an additional three-parametric optimiza-
tion can be applied to improve the accuracy of the parameter
triple. Finally, the measured data is summed up along the so-
defined stacking operators to yield the CRS stacked section.

As a by-product, four additional output section are obtained.
Each of the three stacking parameters as well as the coherency
criterion in dependence of(t0;x0) are available. These parame-
ter sections yield the potential for a subsequent inversion of the
macro model.

Application

For a synthetic data set the CRS stacking method was suc-
cessfully applied by M¨uller (1998). Since in this case the
model is known, the exact stacking parameter can be forward
calculated. By comparing the theoretical parameters with the
ones determined by the CRS stacking method the accuracy of
our approach has been tested. A comparison of model-derived
versus data-derived parameters will be shown.

For a real data set the CRS stack was applied and com-
pared to the result of the conventional processing chain
NMO/DMO/stack. The results can be seen in Figures 3 and 4.
The arrows in the CRS stack mark regions where the result dif-
fers substantially from the result of NMO/DMO/stack. The CRS
stacking technique was able to image events that could not be
seen in the NMO/DMO/stack. Generally, the image quality of
the CRS stack is much better. The S/N ratio is increased and the
continuity of the events is improved.

Let us emphasize once again that no other velocity information
than the near surface velocity was used for the CRS stacking
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Fig. 3: Real data set: result of conventional NMO/DMO/stack.
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Fig. 4: Real data set: result of CRS stack. The major differences to the conventional stack are marked with arrows.
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method, while for NMO/DMO/stack an intensive user-driven ve-
locity analysis was needed.

Conclusions

The CRS stack is a model independent seismic imaging method
and thereby can be performed without any ray tracing and
macro velocity model estimation. Only the knowledge of the
near surface velocity is required. As a result of a CRS stack
one obtains in addition to each simulated ZO sample important
wavefield attributes: the angle of emergence and the radii of
curvature of theNIP and thenormal wave. These attributes
can subsequently be used to derive an approximation of the
inhomogeneous 2-D macro velocity model (Hubral and Krey,
1980; Goldin, 1986) which allows to determine an image in the
depth domain.

The CRS stack can be applied to traces on an arbitrarily irregular
grid without the need of trace interpolation. Additionally, the
simulated ZO section and the attribute sections are not restricted
to the (possibly irregular) input data geometry.

The application of the CRS stack showed noteworthy results
with respect to the stack section and the determined attributes.
The real data example presented exposed significant differences
in comparison to the result of NMO/DMO/stack. Namely, the
continuity of the events and the S/N ratio are enhanced.

In view of the authors, the proposed strategies offer an exciting
approach to improve the stack section and to allow for a subse-
quent inversion.
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