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CRS stack – 3D data example
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CRS stack and attributes
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CRS attributes and velocities

NIP

α

ξNIPR In the vicinity of a ZO ray:
CRP-response can be
approximately described by
t0, ξ , RNIP, α

Velocity model is consistent
if RNIP = 0 at t = 0 for all con-
sidered data points
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Tomography with CRS attributes

Data and model components
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Model: (x, z, θ )i, v jk

M = 1/v0RNIP

T = t0/2

v jk: B-spline coefficients
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Forward modeling

Kinematic ray-tracing

⇒ T , α , ξ

Dynamic ray-tracing

⇒ Ray propagator matrix ΠΠΠ =

(
Q1 Q2
P1 P2

)

⇒ M = P2/Q2
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Inversion procedure

nonlinear least-squares problem

⇒ iterative solution, linearize locally

model update ∆m: least-squares solution of

F∆m = ∆d

with ∆d : data misfit
F : Fréchet derivatives

calculation of Fréchet derivatives:
ray perturbation theory

regularization ⇒ F̂∆m = ∆d̂
(minimization of second derivatives of velocity)
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A synthetic data example

Original velocity model
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Synthetic data example
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Synthetic data example

Picked input data for the inversion
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Synthetic data example

Residual data error after 12 iterations
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Synthetic data example

Inversion result
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Inversion result
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Reconstructed vs. original model

Reconstructed velocity and reflector elements
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Prestack migration results
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Including additional constraints

. . . important in the case of data gaps!

v(x,z) values at arbitrary locations (x,z)

spatially dependent regularization
(smoothness of velocity model)

force velocity structure to follow local reflector
structure

8th Int. Congress, Brasilian Geophysical Society, Rio 2003



W I T
Including additional constraints

. . . important in the case of data gaps!

v(x,z) values at arbitrary locations (x,z)

spatially dependent regularization
(smoothness of velocity model)

force velocity structure to follow local reflector
structure

8th Int. Congress, Brasilian Geophysical Society, Rio 2003



W I T
Including additional constraints

. . . important in the case of data gaps!

v(x,z) values at arbitrary locations (x,z)

spatially dependent regularization
(smoothness of velocity model)

force velocity structure to follow local reflector
structure

8th Int. Congress, Brasilian Geophysical Society, Rio 2003



W I T
Real data example
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Real data example
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Real data example

Picked input data for the inversion
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Real data example

Residual data error after 12 iterations
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Real data example

Inversion result
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Poststack migration
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Prestack migration results
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3D CRS attributes
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Independent of near-surface velocity v0 !
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3D CRS attributes

t2 (∆ξξξ ,h) =
(

t0 + 2pξ ·∆ξξξ
)2

+2t0

(
∆ξξξ T Mξ ∆ξξξ + hT Mh h

)

For a tomographic inversion, only

one azimuth φ of Mh is required: Mφ !

⇒ Data: (T ,Mφ , pξx
, pξy

,ξx,ξy)
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3D inversion with CRS attributes

Data and model components
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3D synthetic example

Cut through original and reconstructed 3D models
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3D synthetic example

Cut through original and reconstructed 3D models

Inversion result
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3D synthetic example

Depth slice at z=1500 m
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3D synthetic example

Depth slice at z=1500 m

Inversion result
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Advantages/Limitations

Input is a by-product of CRS stack

Very few picks are required

Picking in ZO section of increased S/N ratio

No assumptions about reflector continuity

Smooth model (ideal for ray-tracing)

Smooth velocity description must be valid

Limited lateral variation within CRS aperture
(approximately hyperbolic traveltimes)
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