Tomographic inversion with CRS attributes: data extraction and preconditioning

Tilman Klüver and Jürgen Mann

Geophysical Institute, University of Karlsruhe (TH)

09/22/2006
Overview

Introduction

Velocity determination with 3D CRS attributes

Attribute preconditioning and extraction

Synthetic data example

Conclusions

Acknowledgments
Introduction

Construction of a background/migration velocity model is one of the key aims of seismic imaging schemes.

- Problems with conventional reflection tomography: identifying and picking events in the prestack data
- 3D velocity models for depth imaging
- Tomographic approach based on CRS stack results
- Advantages:
 - picking in simulated ZO volume of high S/N ratio
 - pick locations independent of each other
 - very few picks required
NIP waves and velocities

CRS attributes M_h and p_ξ at (t_0, ξ) describe second-order traveltime approximation of emerging NIP wave.
NIP waves and velocities

In consistent velocity models, NIP waves focus at zero traveltime.
Tomography with CRS attributes

Find a velocity model in which all considered NIP waves, described by kinematic wavefield attributes, are correctly modeled.

For tomographic inversion in 3D, one azimuth ϕ of M_h is required: M_ϕ.

For multi-azimuth data the full Matrix M_h is to be preferred.
3D tomography with CRS attributes

Data and model components

Data:
\((\tau, M_{11}, M_{12}, M_{22}, p_{\xi_x}, p_{\xi_y}, \xi_x, \xi_y)_i\)

\(\tau = t_0/2\)

Model:
\((x, y, z, e_x, e_y)_i, v_{jkl}\)

\(v_{jkl}: B\text{-spline coefficients}\)
Inversion procedure

- nonlinear least-squares problem:
 - iterative solution, local linearization
 - $\tau, p_{\xi_x}, p_{\xi_y}, \xi_x, \xi_y$
 from kinematic ray tracing
 - $M_h = DB^{-1}$ from dynamic ray-tracing:
 $T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$
 propagator matrix in Cartesian coordinates
- model update Δm: least-squares solution of
 $F\Delta m = \Delta d$
- calculation of Fréchet derivatives (matrix F):
 ray perturbation theory
Regularization/additional constraints

Regularization:
- minimization of second derivatives of velocity (spatially dependent)

Additional constraints:
- $v(x, y, z)$ values at arbitrary locations (x, y, z)
- force velocity structure to follow local reflector structure
Synthetic example: forward modeled attributes

Model description:

- $9 \times 9 \times 9 = 729$ B-spline knots
- Horizontal spacing: 500 m
- Vertical spacing: 400 m
- 1008 NIP-locations used to model the input data
- Initial ray direction follows local velocity gradient
CO$_2$ CRS: Tomography
T. Klüver & J. Mann

Introduction

Velocity determination

NIP waves & velocities

CRS tomography

Inversion procedure

First example

Preconditioning...

Basics

Smoothing

Extraction

Data example

Conclusions

Acknowledgments
Motivation

CRS attributes have characteristic features:
- they should be constant along the wavelet
- they should vary smoothly along the event

However, in practice
- unphysical fluctuations
- outliers
- possibly not locally coherent

Thus
- event-consistent smoothing
- identification of valid pick locations
The event-aligned volume

time

2p₀

smoothing box

seismic event

midpoint x

midpoint y

x₀

y₀

t₀
Event-consistent smoothing

For each zero-offset sample and CRS-parameter

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter ➡️ remove outliers
 - averaging ➡️ remove fluctuations
- assign result to zero-offset sample
Automated attribute extraction

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace
Synthetic data example

interval velocity [m/s] model at $y = 5000$ m
Synthetic data example

interval velocity [m/s] model at x = 5000 m
CRS-stacked volume

inline section at $y = 5000$ m
CRS-stacked volume

crossline section at $x = 5000$ m
Automatically picked ZO locations

p and M available for all picks
Inversion result (1)

reconstructed velocity [m/s] model at $y = 5000$ m
reconstructed velocity [m/s] model at $x = 5000$ m
Inversion result (2)

Reconstructed NIPs
Nearest true NIPs

full 3D view
Inversion result (2)

inline view at $4000 < y < 4300$ m
Inversion result (2)

![Graph showing reconstructed NIPs and nearest true NIPs with crossline view at 8000 < x < 8300 m]
Conclusions

- 3D tomographic inversion based on CRS attributes
- Advantages:
 - very few picks are required
 - automated smoothing of attributes
 - automated picking in ZO volume
 - no assumptions about reflector continuity
 - smooth velocity model (ideal for ray tracing)
- Limitations:
 - smooth velocity description must be valid
 - limited lateral variation within CRS apertures (approximately hyperbolic traveltimes)
Acknowledgments

This work was kindly supported by the Federal Ministry of Education and Research (BMBF), Germany, and the sponsors of the Wave Inversion Technology (WIT) consortium.

Contributors:
Miriam Spinner: model building, acquisition design, and forward-modelling with NORSAR
Nils-Alexander Müller: 3D CRS stack processing
CO₂ CRS: Tomography
T. Klüver & J. Mann

Introduction

Velocity determination
NIP waves & velocities
CRS tomography
Inversion procedure
First example

Preconditioning . .
Basics
Smoothing
Extraction

Data example

Conclusions

Acknowledgments