Smoothing and automated picking of kinematic wavefield attributes

Tilman Klüver and Jürgen Mann

Wave Inversion Technology (WIT)
Geophysical Institute, University of Karlsruhe (TH)

September 14, 2005
Overview

Introduction

3D Common-Reflection-Surface (CRS) stack

Velocity determination with 3D CRS attributes

CRS-based workflow

Event-consistent smoothing

Automated picking

Data example

Conclusions

Acknowledgments
Introduction

- The Common-Reflection-Surface (CRS) stack provides
 - high S/N stacked ZO volume
 - coherence value for each sample
 - kinematic wavefield attributes for each sample
 - generalised, high density stacking velocity analysis

- The CRS attributes can further be used for many applications, e.g.:
 - calculation of projected Fresnel zone and geometrical spreading factor
 - improved AVO-analysis
 - tomographic determination of macro-velocity models
Introduction

- The Common-Reflection-Surface (CRS) stack provides
 - high S/N stacked ZO volume
 - coherence value for each sample
 - kinematic wavefield attributes for each sample
 - generalised, high density stacking velocity analysis

- The CRS attributes can further be used for many applications, e.g.:
 - calculation of projected Fresnel zone and geometrical spreading factor
 - improved AVO-analysis
 - tomographic determination of macro-velocity models
Introduction

- CRS attributes are subject to
 - outliers
 - non-physical fluctuations

- Attribute-based applications are impaired

- Application considered here: Tomographic determination of macro-velocity models using CRS attributes
Introduction

- CRS attributes are subject to
 - outliers
 - non-physical fluctuations

- Attribute-based applications are impaired

- Application considered here:
 Tomographic determination of macro-velocity models using CRS attributes
Introduction

- CRS attributes are subject to
 - outliers
 - non-physical fluctuations
- Attribute-based applications are impaired
- Application considered here:
 Tomographic determination of macro-velocity models using CRS attributes
Introduction

CRS tomography

- Advantages:
 - picking in simulated ZO volume of high S/N ratio (output of CRS)
 - pick locations independent of each other
 - very few picks required

- Quality of result depends on quality of input CRS attributes
Introduction

CRS tomography

▶ Advantages:
 ▶ picking in simulated ZO volume of high S/N ratio (output of CRS)
 ▶ pick locations independent of each other
 ▶ very few picks required

▶ Quality of result depends on quality of input CRS attributes
3D CRS attributes

Traveltime depends on eight attributes:

\[t^2 (\Delta \xi, h) = \left(t_0 + 2 p_\xi \cdot \Delta \xi \right)^2 + 2 t_0 \left(\Delta \xi^T M_\xi \Delta \xi + h^T M_h h \right) \]

\[p_\xi = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^T \]

\[M_h = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^T \]

\[M_\xi = \frac{1}{v_0} \mathbf{D} \mathbf{K}_\mathbf{N} \mathbf{D}^T \]

NIP: normal incidence point
3D CRS attributes

Traveltime depends on eight attributes:

\[t^2 (\Delta \xi, h) = (t_0 + 2 p \cdot \Delta \xi)^2 \]

\[+ 2t_0 \left(\Delta \xi^T M_{\xi} \Delta \xi + h^T M_h h \right) \]
NIP waves and velocities

CRS attributes M_h and p_ξ at (t_0, ξ) describe second-order traveltime approximation of emerging NIP wave.
NIP waves and velocities

(T, M_h, p_ξ, ξ)

In consistent velocity models, NIP waves focus at zero traveltime.
Tomography with CRS attributes

Find a velocity model in which all considered NIP waves, described by kinematic wavefield attributes, are correctly modelled.
CRS-based workflow

- CRS – stack
- NIP-wave tomography
- Migration
fluctuations in CRS attributes, which are not consistent with theory, influence the inversion result

- manual picking is very time consuming, especially in 3D
fluctuations in CRS attributes, which are not consistent with theory, influence the inversion result.

- manual picking is very time consuming, especially in 3D
CRS-based workflow

- How to remove outliers and fluctuations in the attributes?
- Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?
- How to do this automatically?

CRS – stack

NIP-wave tomography

Migration
How to remove outliers and fluctuations in the attributes?

Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?

How to do this automatically?
CRS-based workflow

- How to remove outliers and fluctuations in the attributes?
- Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?
- How to do this automatically?
CRS-based workflow

- **Strategy**
 - smoothing and picking in volumes aligned with reflection events:
 - volume size defines locality
 - usage of locally valid statistics
 - to remove outliers and fluctuations
 - to identify valid pick locations

- **Smoothing**
- **optional restacking**
- **automated picking**
- **NIP-wave tomography**
- **Migration**

Introduction

3D CRS stack
Velocity determination
NIP waves
CRS tomography

Workflow

Smoothing
Picking
Data example
Attribute volumes
Picked attributes

Conclusions

Acknowledgments

Related talks
CRS-based workflow

Strategy

- smoothing and picking in volumes aligned with reflection events:
 - volume size defines locality
 - usage of locally valid statistics
 - to remove outliers and fluctuations
 - to identify valid pick locations
CRS-based workflow

Strategy
smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
 - to remove outliers and fluctuations
 - to identify valid pick locations
CRS-based workflow

Strategy

smoothing and picking in volumes aligned with reflection events:

▶ volume size defines locality
▶ usage of locally valid statistics

⇒ to remove outliers and fluctuations
⇒ to identify valid pick locations
CRS-based workflow

Strategy
- smoothing and picking in volumes aligned with reflection events:
 - volume size defines locality
 - usage of locally valid statistics
 - to remove outliers and fluctuations
 - to identify valid pick locations

- CRS – stack
- Smoothing
- optional restacking
- automated picking
- NIP-wave tomography
- Migration
Event-aligned volume

$\begin{align*}
\text{time} \\
2\vec{p}_0 \\
\text{seismic event} \\
\text{midpoint } y \\
\text{midpoint } x \\
\text{midpoint } y_0 \\
\text{midpoint } x_0 \\
\end{align*}$
Event-aligned volume

smoothing box

midpoint x

midpoint y

seismic event

2p₀

t₀

x₀

y₀

0

time
Event-consistent smoothing

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter ➩ remove outliers
 - averaging ➩ remove fluctuations
- assign result to zero-offset sample
Event-consistent smoothing

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter ➞ remove outliers
 - averaging ➞ remove fluctuations
- assign result to zero-offset sample
Event-consistent smoothing

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter ➞ remove outliers
 - averaging ➞ remove fluctuations
- assign result to zero-offset sample
Event-consistent smoothing

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter ➔ remove outliers
 - averaging ➔ remove fluctuations
- assign result to zero-offset sample
Event-consistent smoothing

For each zero-offset sample and CRS-parameter:

▶ align smoothing volume with reflection event using first traveltime derivatives
▶ reject samples below user-defined coherence threshold
▶ reject samples with dip difference beyond user-defined threshold
 ➤ avoid mixing of events
▶ apply combined filter:
 ➤ median filter ➤ remove outliers
 ➤ averaging ➤ remove fluctuations
▶ assign result to zero-offset sample
Stack, unsmoothed attributes
Stack, smoothed attributes
Coherence, unsmoothed attributes
Coherence, smoothed attributes
Automated picking

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume is below a given coherence threshold or has a dip difference exceeding a given threshold or if amplitude is below a user-defined threshold
- continue on selected trace
Automated picking

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume is below a given coherence threshold or has a dip difference exceeding a given threshold or if amplitude is below a user-defined threshold
- continue on selected trace
Automated picking

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace
Automated picking

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace
Automated picking

For each selected trace

▶ search (next) coherence maximum
▶ get nearest maximum of stack envelope
▶ align volume with reflection event using first traveltime derivatives
▶ reject pick if user-defined percentage of all samples inside the volume
 ▶ is below a given coherence threshold or
 ▶ has a dip difference exceeding a given threshold
▶ or if amplitude is below a user-defined threshold
 ➤ prefer high-energy events
▶ continue on selected trace
Automated picking

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace
Automated picking

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace
Picks on selected sections
Stacking velocity
“Smoothed” stacking velocity
Normal ray emergence angle
Smoothed normal ray emergence angle
Coherence, unsmoothed attributes
Coherence, smoothed attributes
Stacking velocity
“Smoothed” stacking velocity
Normal ray emergence angle
Smoothed normal ray emergence angle
Conclusions

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography
Conclusions

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography
Conclusions

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography
Conclusions

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography
Conclusions

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography
Conclusions

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography
Acknowledgements

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) consortium, Karlsruhe, Germany and the Federal Ministry of Education and Research, Germany.
Related presentations

Workshop WS-2 “Velocity analysis for depth imaging”, Monday afternoon:

13:30 Common-Reflection-Surface stack – a generalized stacking velocity analysis tool

Session “Seismic Imaging”, Wednesday morning:

09:45 CRS-stack-based seismic imaging for land data and complex near-surface conditions

11:00 True-amplitude CRS-based Kirchhoff time migration for AVO analysis

11:25 Common-Reflection-Surface stack for OBS and VSP geometries and multi-component seismic reflection data
Introduction

3D CRS stack

Velocity determination

NIP waves

CRS tomography

Workflow

Smoothing

Picking

Data example

Attribute volumes

Picked attributes

Conclusions

Acknowledgments

Related talks