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Motivation

Model-based approaches:

sensitive to model errors

migration velocity analysis is costly

Data-driven approaches:

interval velocity model determination is postponed

robust methods

however, classic data-driven approaches
use only a subset of available data, thus no
optimum S/N ratio
provide little information for later inversion
data-driven aspects usually not fully exploited
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NMO/DMO/stack vs. CRS stack – 3-D data, inline
From Bergler et. al (2002). Data courtesy of ENI E & P Division.
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depth slices of coherence images: conventional vs. CRS-based
Courtesy of ENI E & P Division
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Basic concepts

Derive an approximation of the kinematic reflection
response for a reflector segment in depth
characterized by its

local dip and
local curvature,

i. e., the reflector properties up to second order.

Use parameters defined either
in the time domain
➥ traveltime derivatives
or in the depth domain at the acquisition surface
➥ properties of hypothetical wavefronts,

both linked by the near-surface velocity v0.
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Determine optimum stacking operator by means of
coherence analysis in the data.
➥ generalized multi-dimensional velocity analysis

Stack along the determined stacking operator.

Results:

a simulated section for an arbitrarily chosen
configuration

a set of associated wavefield attribute sections
➥ subsequent applications like velocity determination

an associated coherence section
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Derivation

Possible ways to derive an approximation of the kinematic
reflection response:

paraxial ray theory, i. e., assumption of a linear
relation between the properties of neighboring rays

geometrical optics using the concept of object and
image points (2-D case only)

pragmatic way: second-order expansion of traveltime,
initially without physical interpretation
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Taylor expansion up to second order – general case
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Pragmatic approach

Preliminary conclusions:

In some cases, not all derivatives are independent in
the context of paraxial ray theory. This is not evident
at this stage!

Hyperbolic approximations can be obtained by
squaring and neglecting higher order terms.

We need a physical interpretation of the derivatives
to identify hidden dependencies,
to understand which values are physically
reasonable,
and to make use of the derivatives for various
purposes.
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Physical interpretation

Simplest case: 2-D acquisition, zero-offset

t (xm,h) = t0 +
∂ t

∂ xm

(
xm− x0

)
+

1
2

[
∂ 2t
∂ x2

m

(
xm− x0

)2
+

∂ 2t
∂ h2 h2

]

t (xm,h) = t0 +
∂ t

∂ xm

(
xm− x0

)
+

1
2

[
∂ 2t
∂ x2

m

(
xm− x0

)2
+

∂ 2t
∂ h2 h2

]

Horizontal slowness:

px =
1
2

∂ t
∂ xm

∣∣∣∣∣
(xm=x0,h=0)

= |~p|sinα=
sinα

v0

~p slowness vector
α emergence angle
v0 near-surface velocity
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Simplest case: 2-D acquisition, zero-offset
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+

1
2

[
∂ 2t
∂ x2

m

(
xm− x0

)2
+

∂ 2t
∂ h2 h2

]

Curvature of “zero-offset wavefront”:

KN =
v0

2
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cos2 α
∂ 2t
∂ x2

m

∣∣∣∣∣
(xm=x0,h=0)

A “zero-offset wavefront”, also called normal wavefront,
can be obtained from an exploding reflector experiment.
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Simplest case: 2-D acquisition, zero-offset
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Curvature of “common-midpoint (CMP) wavefront”:

Problem: no simple physical experiment available!

However: up to second order, CMP traveltimes and
zero-offset diffraction traveltimes coincide
(NIP wave theorem, Hubral 1983).

➥ In analogy to the exploding reflector experiment, a
exploding reflection point experiment approximates the
“CMP wavefront”.
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An exploding reflection-point experiment yields the
so-called normal-incidence-point (NIP) wavefront.
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Physical interpretation

Replacing all derivatives, we obtain

t (xm,h) = t0 +
2sinα

v0

(
xm− x0

)
+

cos2 α
v0

[
KN

(
xm− x0

)
+ KNIP h2

]

in terms of kinematic wavefield attributes.

Accordingly, the hyperbolic counterpart reads

t2 (xm,h)≈ t̃ 2 (xm,h) =

[
t0 +

2sinα
v0

(
xm− x0

)]2

+
2 t0 cos2 α

v0

[
KN

(
xm− x0

)2
+ KNIP h2

]
.
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Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:

layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach

downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:

initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments

forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts

iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Applications of attributes

Construction of interval velocity models based on
picked zero-offset traveltimes and attributes with

a generalized Dix-type inversion:
layer stripping approach
downward propagation of NIP wavefronts until
RNIP = 0 ∧ t0 = 0

a tomographic approach:
initial model of interval velocity and reflector
segments
forward modeling of NIP wavefronts
iterative model updates to minimize misfit

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Reconstructed vs. original model
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Based on approximation of diffraction traveltimes:

approximation of geometrical spreading factor

approximation of projected Fresnel zone

data-driven time migration

identification of diffraction events

Based on moveout-corrected CRS super gathers:

residual statics correction
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Applications of attributes

Extensions based on attribute extrapolation at surface:

CRS stack for smooth topography
considers dip and cuvature of acquisition surface
same traveltime formula as without topography

☞ poster presentation on Tuesday afternoon ☞

CRS stack for rugged topography
direct use of source and receiver elevations
wavefield attributes as if recorded on plane surface

Redatuming
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Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack
attribute-based velocity determination
poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack
attribute-based velocity determination
poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack
attribute-based velocity determination
poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow

CRS stack
attribute-based velocity determination
poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack

attribute-based velocity determination
poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack
attribute-based velocity determination

poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack
attribute-based velocity determination
poststack migration of CRS result and/or

prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Conclusions

consequent generalization of classic data-driven
approaches

requires minimum interaction

provides wavefield attributes for various applications

allows consistent processing workflow
CRS stack
attribute-based velocity determination
poststack migration of CRS result and/or
prestack migration based on inversion result

8th SBGf International Conference, Rio de Janeiro, Brazil 2003



W I T
Outlook

implementation of 3-D inversion
(in progress)

implementation of finite-offset inversion
(in progress)

application of complete workflow to real data

use of approximated projected Fresnel zone for
limited aperture migration

data regularization
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