True-amplitude CRS-based Kirchhoff time migration for AVO analysis

Miriam Spinner and Jürgen Mann

Wave Inversion Technology (WIT) Consortium
Geophysical Institute, University of Karlsruhe (TH)

September 14, 2005
Overview

Motivation
 Principle
 Effect of migration aperture on amplitudes

Common-Reflection-Surface stack

Adapted workflow
 Extraction of CRS attributes
 Velocity model determination
 Determination of migration attributes

Synthetic data example

Conclusions

Acknowledgments
Kirchhoff migration
Kirchhoff migration
Kirchhoff migration: stationary point
Kirchhoff migration: conventional aperture
Kirchhoff migration: minimum aperture
Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone
Kirchhoff migration: minimum aperture

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone
Kirchhoff migration: minimum aperture

Optimum aperture = minimum aperture
- centered around stationary point
- size: projected Fresnel zone
Apertures & amplitudes

Problems with user-given apertures:

- too small: underestimated amplitudes and/or loss of steep events
- too large: undesired noise and/or other events contribute to stack

True-amplitude migration requires sufficiently large apertures.
Apertures & amplitudes

Problems with user-given apertures:

- **too small**: underestimated amplitudes and/or loss of steep events
- **too large**: undesired noise and/or other events contribute to stack

→ true-amplitude migration requires sufficiently large apertures

→ risk of operator aliasing

→ anti-alias filters tend to falsify amplitudes
Apertures & amplitudes

Problems with user-given apertures:

- **too small** underestimated amplitudes and/or loss of steep events
- **too large** undesired noise and/or other events contribute to stack

→ true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes
Apertures & amplitudes

Problems with user-given apertures:

- **too small**: underestimated amplitudes and/or loss of steep events
- **too large**: undesired noise and/or other events contribute to stack

⇒ true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes
Apertures & amplitudes

Problems with user-given apertures:

- **too small** underestimated amplitudes and/or loss of steep events
- **too large** undesired noise and/or other events contribute to stack

⇒ true-amplitude migration requires sufficiently large apertures
 ➞ risk of operator aliasing
 ➞ anti-alias filters tend to falsify amplitudes
Apertures & amplitudes

Problems with user-given apertures:

- **too small**: underestimated amplitudes and/or loss of steep events
- **too large**: undesired noise and/or other events contribute to stack

- true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
 - second-order approximation of reflection events in offset and midpoint direction
 - spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
 - fully automated coherence-based application
 - output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio

- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 ➤ much more prestack traces used
 ➤ enhanced signal/noise ratio
- fully automated coherence-based application
 ➤ output:
 ➤ zero-offset section/volume
 ➤ set of stacking parameters (CRS attributes)
 ➤ coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
- coherence section
Common-Reflection-Surface stack

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section
General workflow

Common Reflection Surface (CRS) stack

Kinematic wavefield (CRS) attributes

Event–consistent picking

Event–consistent smoothing

Determination of stationary point
Determination of projected Fresnel zone
Determination of CRP trajectory

Time migration velocity model

Minimum aperture time migration
Workflow: extraction of attributes

Common Reflection Surface (CRS) stack

Kinematic wavefield (CRS) attributes

Event–consistent picking

Event–consistent smoothing

Determination of stationary point
Determination of projected Fresnel zone
Determination of CRP trajectory

Time migration velocity model

Minimum aperture time migration
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

▸ meaningful only along reflection events
▸ subject to outliers
▸ subject to unphysical fluctuations

▸ attribute-based event-consistent smoothing
 ◀ smooth input for determination of PFZ and stationary point
▸ attribute-based event-consistent picking
 ◀ input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 - input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 - input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 - input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point

- attribute-based event-consistent picking
 - input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point

- attribute-based event-consistent picking
 - input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point

- attribute-based event-consistent picking
 - input for velocity model determination
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations

- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point

- attribute-based event-consistent picking
 - input for velocity model determination
Velocity model determination

Common Reflection Surface (CRS) stack

Kinematic wavefield (CRS) attributes

Event–consistent picking

Event–consistent smoothing

Determination of stationary point
Determination of projected Fresnel zone
Determination of CRP trajectory

Time migration velocity model

Minimum aperture time migration
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
 - interpolation of velocity model

* CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
 - interpolation of velocity model
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
 - interpolation of velocity model

Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
 - interpolation of velocity model
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

- interpolation of velocity model
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

- interpolation of velocity model
Velocity model determination

True diffraction response
True reflection response
Approx. diffraction response
Approx. reflection response
True apex
Approx. apex

Distance [km]
Time [s]

2 4 6
P0
Velocity model determination
Velocity model determination

-3.5 -3 -2.5 -2 -1.5 -1 -0.5
2100 2200 2300 2400 2500 2600 2700 2800
t [s]
v [m/s]
picked stacking velocities
+ calculated migration velocities *
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
 - interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints
Velocity model determination

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints
Velocity model determination
Velocity model determination

\(v_{\text{MIG}}: \text{interpolated} \)

\(x \) [m]

\(t \) [s]

\(v \) [m/s]
Workflow: migration attributes

Common Reflection Surface (CRS) stack ➔

Kinematic wavefield (CRS) attributes ➔

Event–consistent picking ➔

Event–consistent smoothing ➔

Determination of stationary point ➔

Determination of projected Fresnel zone ➔

Determination of CRP trajectory ➔

Time migration velocity model ➔

Minimum aperture time migration
PFZ & stationary point

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
PFZ & stationary point

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
PFZ & stationary point

Stationary point for ZO:
- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
PFZ & stationary point

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically

\Rightarrow minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

\Rightarrow directly available from CRS attributes

\[
\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 \tau}{2 \left(\frac{1}{R_N} - \frac{1}{R_{NIP}} \right)}}
\]
PFZ & stationary point

Stationary point for ZO:
- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:
- directly available from CRS attributes

\[\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left(\frac{1}{R_N} - \frac{1}{R_{NIP}} \right)}} \]
PFZ & stationary point

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

- directly available from CRS attributes

$$ \frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}} $$
PFZ & stationary point

Stationary point for ZO:

- migration operator \(\tau_D \) is tangent to event \(\tau_R \)
- dip of reflection event related to emergence angle \(\alpha \)
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

- directly available from CRS attributes

\[
\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}
\]
extrapolation of stationary point to finite offset
Widening of PFZ size with offset

reflector depth $z=1000$ m

reflector dip=0 deg
reflector dip=10 deg
reflector dip=20 deg

reflector depth $z=4000$ m

reflector dip=0 deg
reflector dip=10 deg
reflector dip=20 deg
Original model (v_P)
Zero-offset seismogram
Migration velocity model
Image gather
PreSTM stacked section (conventional)
PreSTM stacked section (CRS-based)
CRS-based stationary points
CRS-based ZO projected Fresnel zone

Time [s]
Distance [km]
PFZ width [m]
AVO (first target reflector)
AVO (second target reflector)

![Graph showing AVO (Amplitude Versus Offset) for second target reflector with different cases: CRS-based PSTM, no noise, CRS-based PSTM, noise, and conv. PSTM, noise. The x-axis represents depth in meters (h), and the y-axis represents amplitude. The graph compares the response at various depths for each case.](image-url)
AVO (third target reflector)

[Graph showing AVO data for different models: CRS-based PSTM with no noise, CRS-based PSTM with noise, and conventional PSTM with noise. The graph plots amplitude on the y-axis and depth in meters on the x-axis.]
ZO amplitudes (first target reflector)
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - more reliable amplitudes
- reduction of migration artifacts
 - no operator aliasing
 - less summing of unwanted contributions from other events
 - less summing of noise
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
- reduction of migration artifacts
- no operator aliasing
- more reliable amplitudes
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
Conclusions

CRS-based minimum aperture time migration concept allows
- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
- reduction of migration artifacts
- no operator aliasing
- more reliable amplitudes
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
- clearer images
 - reduction of migration artifacts
 - no operator aliasing
- more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise
Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise
Acknowledgments

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) Consortium, Karlsruhe, Germany.
Related presentations

Workshop WS-2 “Velocity analysis for depth imaging”, Monday afternoon:

13:30 Common-Reflection-Surface stack – a generalized stacking velocity analysis tool

Session “Seismic Imaging”, Wednesday morning:

09:20 Smoothing and automated picking of kinematic wavefield attributes

09:45 CRS-stack-based seismic imaging for land data and complex near-surface conditions

11:25 Common-Reflection-Surface stack for OBS and VSP geometries and multi-component seismic reflection data