CRS-based minimum-aperture time migration – a 2D land data case study

Miriam Spinner and Jürgen Mann

Wave Inversion Technology (WIT) Consortium
Geophysical Institute, University of Karlsruhe (TH)

September 27, 2007
Overview

Principle of Kirchhoff migration

Common-Reflection-Surface stack

Real data example
 CRS stack results
 Velocity model building
 Practical aspects
 Aperture parameters
 Poststack time migration
 Prestack time migration

Conclusions

Acknowledgments
The principle of Kirchhoff migration

General properties:
The principle of Kirchhoff migration

General properties:

- integral solution of wave equation
The principle of Kirchhoff migration

General properties:

- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
The principle of Kirchhoff migration

General properties:
- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
The principle of Kirchhoff migration

General properties:

- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available
The principle of Kirchhoff migration

General properties:
- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available

Time migration:
The principle of Kirchhoff migration

General properties:

- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available

Time migration:

- analytic migration operator
The principle of Kirchhoff migration

General properties:
- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available

Time migration:
- analytic migration operator
- analytic migration weights
The principle of Kirchhoff migration

General properties:
- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available

Time migration:
- analytic migration operator
- analytic migration weights
- simplified model building
The principle of Kirchhoff migration

General properties:
- integral solution of wave equation
- each point is considered as potential secondary source (dilfractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available

Time migration:
- analytic migration operator
- analytic migration weights
- simplified model building
- small model error sensitivity
The principle of Kirchhoff migration

General properties:
- integral solution of wave equation
- each point is considered as potential secondary source (diffractor)
- macro-model required for Green’s functions
- weight function for true amplitudes available

Time migration:
- analytic migration operator
- analytic migration weights
- simplified model building
- small model error sensitivity
 - well suited for amplitude analysis
Idea of minimum-aperture migration

Constructive contributions from tangency region only:
- Aperture attached to stationary point, depends on event dip.
- Width given by first projected Fresnel zone.
- Depends on event dip and curvature.

Conventional approach:
- Dip and curvature unknown.
- Aperture centered around operator apex.
- Size user given.
- Too small: loss of steep events.
- Too large: operator aliasing, noise.
- General: migration artifacts, degraded amplitudes.
Idea of minimum-aperture migration

constructive contributions from tangency region only:
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 depends on event dip
- width given by first projected Fresnel zone
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip

- width given by first projected Fresnel zone
 - depends on event dip and curvature
Idea of minimum-aperture migration

constructive contributions from tangency region only:
- aperture attached to stationary point
 ➤ depends on event dip
- width given by first projected Fresnel zone
 ➤ depends on event dip and curvature

Conventional approach: dip and curvature unknown
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip

- width given by first projected Fresnel zone
 - depends on event dip and curvature

Conventional approach: dip and curvature unknown

- aperture centered around operator apex
Idea of minimum-aperture migration

Constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip
- width given by first projected Fresnel zone
 - depends on event dip and curvature

Conventional approach: dip and curvature unknown

- aperture centered around operator apex
- size user given
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip
 - width given by first projected Fresnel zone
 - depends on event dip and curvature

Conventional approach: dip and curvature unknown

- aperture centered around operator apex
- size user given
 - too small: loss of steep events
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip
- width given by first projected Fresnel zone
 - depends on event dip and curvature

Conventional approach: dip and curvature unknown

- aperture centered around operator apex
- size user given
 - too small: loss of steep events
 - too large: operator aliasing, noise
Idea of minimum-aperture migration

constructive contributions from tangency region only:

- aperture attached to stationary point
 - depends on event dip
- width given by first projected Fresnel zone
 - depends on event dip and curvature

Conventional approach: dip and curvature unknown

- aperture centered around operator apex
- size user given
 - too small: loss of steep events
 - too large: operator aliasing, noise
 - general: migration artifacts, degraded amplitudes
Common-Reflection-Surface stack

Common-Reflection-Surface stack extracts structural information from prestack data for each sample:

- Emergence angle of normal ray
- Radius of normal-incidence-point (NIP) wave
- Curvature of normal wave

All information required for:

- (time) migration velocity model building
- Determination of stationary points
- Estimation of projected Fresnel zone

Conclusions
Acknowledgments
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

▶ emergence angle of normal ray
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:
 ➤ emergence angle of normal ray
 ➤ event dip
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
- event dip
- radius of normal-incidence-point (NIP) wave
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
- curvature of normal wave
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
- curvature of normal wave
 - event curvature
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
- curvature of normal wave
 - event curvature

That’s all information required for...
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
- curvature of normal wave
 - event curvature

That’s all information required for...

- (time) migration velocity model building
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
- curvature of normal wave
 - event curvature

That’s all information required for...

- (time) migration velocity model building
- determination of stationary points
Common-Reflection-Surface stack

...extracts structural information from prestack data for each sample:

- emergence angle of normal ray
 - event dip
- radius of normal-incidence-point (NIP) wave
 - stacking and migration velocities
- curvature of normal wave
 - event curvature

That’s all information required for...

- (time) migration velocity model building
- determination of stationary points
- estimation of projected Fresnel zone
General workflow

1. Common Reflection Surface (CRS) stack
2. Kinematic wavefield (CRS) attributes
3. Automatic picking
4. Event–consistent smoothing
5. Determination of stationary point
6. Determination of projected Fresnel zone
7. Determination of CRP trajectory
8. Time migration velocity model
9. Minimum aperture time migration

General workflow

Common Reflection Surface (CRS) stack

Kinematic wavefield (CRS) attributes

Automatic picking

Event–consistent smoothing

Determination of stationary point

Determination of projected Fresnel zone

Determination of CRP trajectory

Time migration velocity model

Minimum aperture time migration

General workflow

- Common Reflection Surface (CRS) stack
- Kinematic wavefield (CRS) attributes
- Automatic picking
- Event–consistent smoothing
- Determination of stationary point
- Determination of projected Fresnel zone
- Determination of CRP trajectory
- Time migration velocity model
- Minimum aperture time migration

General workflow

- Common Reflection Surface (CRS) stack

- Kinematic wavefield (CRS) attributes

- Automatic picking
- Event–consistent smoothing

- Determination of stationary point
- Determination of projected Fresnel zone
- Determination of CRP trajectory

- Time migration velocity model

- Minimum aperture time migration

General workflow

Common Reflection Surface (CRS) stack

Kinematic wavefield (CRS) attributes

Automatic picking

Event–consistent smoothing

Determination of stationary point
Determination of projected Fresnel zone
Determination of CRP trajectory

Time migration

Minimum aperture time migration

Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
- standard preprocessing
- amplitudes not preserved

Main purpose: Delineation of faults
Real data example

Acquisition parameters:

- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
- Standard preprocessing
- Amplitudes not preserved

Main purpose: Delineation of faults
Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
- standard preprocessing
Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
- standard preprocessing
- amplitudes *not* preserved
Real data example

Acquisition parameters:
- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
- standard preprocessing
- amplitudes not preserved
 ➔ qualitative interpretation only
Real data example

Acquisition parameters:

- 2D land data, 12 km fixed spread geometry
- 50 m shot/receiver spacing
- 2 ms sampling interval
- standard preprocessing
- amplitudes *not* preserved
 ➡ qualitative interpretation only

Main purpose:
Delineation of faults
Coherence section
Emergence angle section
NIP wave radius section
Normal wave curvature section
Unmigrated picks

CMP number

Time [s]

50 100 150 200 250 300 350 400
Unmigrated and migrated picks

![Graph showing unmigrated and migrated picks with time, CMP number, and velocity](image)
Migrated picks

CMP number

Time [s]

v [km/s]

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.5 1.0 1.5 2.0
Interpolated velocity model
Image gathers
Practical aspects
Practical aspects

- Preconditioning of CRS attributes
Practical aspects

- Preconditioning of CRS attributes
 - event-consistent smoothing

Criteria for stationary points

- Dip estimation very stable
- Stable determination of stationary point
- Normal wave curvature less stable
 - In worst case: plane wave approximation
Practical aspects

- Preconditioning of CRS attributes
 - event-consistent smoothing
 - dip estimation very stable
Practical aspects

- Preconditioning of CRS attributes
 - event-consistent smoothing
 - dip estimation very stable
 - stable determination of stationary point
Practical aspects

- Preconditioning of CRS attributes
 - event-consistent smoothing
 - dip estimation very stable
 - stable determination of stationary point
 - normal wave curvature less stable
Practical aspects

- Preconditioning of CRS attributes
 - event-consistent smoothing
 - dip estimation very stable
 ➔ stable determination of stationary point
 - normal wave curvature less stable
 ➔ in worst case: plane wave approximation
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture

Aperture: minimum (red), conventional (blue)

Kienast, 2007
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
- Ambiguities
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
- Ambiguities
 - input domain: conflicting dip situations
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
- Ambiguities
 - input domain: conflicting dip situations
 - can be handled if available from CRS
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
- Ambiguities
 - input domain: conflicting dip situations
 - can be handled if available from CRS
 - output domain: multiple stationary points

Problem: stable recognition of such situations

Not applied for the presented data
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
- Ambiguities
 - input domain: conflicting dip situations
 - can be handled if available from CRS
 - output domain: multiple stationary points
 - similar strategy as in input domain
Practical aspects

- Preconditioning of CRS attributes
- Criteria for stationary points
- Transition from minimum to conventional aperture
- Ambiguities
 - input domain: conflicting dip situations
 - can be handled if available from CRS
 - output domain: multiple stationary points
 - similar strategy as in input domain
 - problem: stable recognition of such situations

Preconditioning of CRS attributes

> Criteria for stationary points

> Transition from minimum to conventional aperture

> Ambiguities

- input domain: conflicting dip situations
 - can be handled if available from CRS
- output domain: multiple stationary points
 - similar strategy as in input domain
- problem: stable recognition of such situations
Practical aspects

▶ Preconditioning of CRS attributes
▶ Criteria for stationary points
▶ Transition from minimum to conventional aperture
▶ Ambiguities
 ▶ input domain: conflicting dip situations
 ➤ can be handled if available from CRS
 ▶ output domain: multiple stationary points
 ➤ similar strategy as in input domain
 ▶ problem: stable recognition of such situations
 ▶ not applied for the presented data
CRS-based ZO projected Fresnel zone
PostSTM section (CRS-based)
PreSTM section (CRS-based)
Conclusions

Minimum-aperture time migration
Conclusions

Minimum-aperture time migration

- all required information available from CRS stack
Conclusions

Minimum-aperture time migration

➤ all required information available from CRS stack
➤ simple model building
Conclusions

Minimum-aperture time migration
- all required information available from CRS stack
- simple model building
- reduced noise level
Conclusions

Minimum-aperture time migration
- all required information available from CRS stack
- simple model building
- reduced noise level
- less artifacts
Conclusions

Minimum-aperture time migration

- all required information available from CRS stack
- simple model building
- reduced noise level
- less artifacts
- no operator aliasing
Conclusions

Minimum-aperture time migration

- all required information available from CRS stack
- simple model building
- reduced noise level
- less artifacts
- no operator aliasing
- clearer delineation of faults
Acknowledgments

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) Consortium, Hamburg, Germany