Double diffraction stack for an alternative strategy for CRS-based limited-aperture Kirchhoff depth migration

Ines Veile and Jürgen Mann

Geophysical Institute, University of Karlsruhe (TH)
Wave Inversion Technology (WIT)

Salvador, Bahia, Brazil, August 26th, 2009
Overview

Motivation

CRS-based limited-aperture migration

Alternative approach

Synthetic data

Real land data

Conclusions
Motivation

CRS-based approach

Alternative approach

Synthetic data

Real land data

Conclusions
Motivation

CRS-based approach

Alternative approach

Synthetic data

Real land data

Conclusions

Jäger (2005)
Motivation

CRS-based approach

Alternative approach

Synthetic data

Real land data

Conclusions
Motivation

CRS-based approach

Alternative approach

Synthetic data

Real land data

Conclusions
Motivation

Limited aperture = optimum aperture
Motivation

Limited aperture = optimum aperture

- minimized unwanted contributions
- optimum S/N ratio
Motivation

Limited aperture = optimum aperture
 ▶ minimized unwanted contributions
 ➡ optimum S/N ratio
 ▶ less summations required
 ➡ increased performance
Motivation

Limited aperture = optimum aperture

- minimized unwanted contributions
 - optimum S/N ratio
- less summations required
 - increased performance
- reduced migration artifacts, no operator aliasing
Motivation

Limited aperture = optimum aperture

- minimized unwanted contributions
 ⇒ optimum S/N ratio
- less summations required
 ⇒ increased performance
- reduced migration artifacts, no operator aliasing
- smallest aperture allowing true-amplitude processing
Motivation

Required properties for limited aperture
Motivation

Required properties for limited aperture

- location of aperture
 ➤ stationary point
Motivation

Required properties for limited aperture

- location of aperture
 - stationary point
- size of aperture
 - projected Fresnel zone
Motivation

Required properties for limited aperture

- location of aperture
 - stationary point
- size of aperture
 - projected Fresnel zone

both as functions of offset
CRS-based limited-aperture migration

Motivation
CRS-based approach
Alternative approach
Synthetic data
Real land data
Conclusions
CRS-based limited-aperture migration

CRS attributes (here: 2D)
CRS-based limited-aperture migration

CRS attributes (here: 2D)
- emergence angle α ➞ dip of reflection event
CRS-based limited-aperture migration

CRS attributes (here: 2D)

- emergence angle $\alpha \Rightarrow$ dip of reflection event
- radius of NIP wavefront R_{NIP}
CRS-based limited-aperture migration

CRS attributes (here: 2D)

- emergence angle $\alpha \Leftrightarrow$ dip of reflection event
- radius of NIP wavefront R_{NIP}
- radius of normal wavefront R_N

\[W_{\text{F}}^2 = \cos \alpha \left(1 + \left| \frac{R_N - 1}{R_{\text{NIP}}} \right| \right) \]

\[x_m(h) = x_0 + R_{\text{NIP}} \frac{\sqrt{h^2 + 1} - 1}{\sin \alpha} \]

Motivation
CRS-based approach
Alternative approach
Synthetic data
Real land data
Conclusions
CRS-based limited-aperture migration

CRS attributes (here: 2D)

- emergence angle $\alpha \iff$ dip of reflection event
- radius of NIP wavefront R_{NIP}
- radius of normal wavefront R_{N}

Derived properties
CRS-based limited-aperture migration

CRS attributes (here: 2D)
- emergence angle $\alpha \Rightarrow$ dip of reflection event
- radius of NIP wavefront R_{NIP}
- radius of normal wavefront R_N

Derived properties
- projected ZO Fresnel zone

\[
\frac{W_F}{2} = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2\left|\frac{1}{R_N} - \frac{1}{R_{\text{NIP}}}\right|}}
\]
CRS-based limited-aperture migration

CRS attributes (here: 2D)
- emergence angle α \Rightarrow dip of reflection event
- radius of NIP wavefront R_{NIP}
- radius of normal wavefront R_N

Derived properties
- projected ZO Fresnel zone

\[
\frac{W_F}{2} = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left(1 \frac{1}{R_N} - \frac{1}{R_{\text{NIP}}}\right)}}
\]

- projection of CRP trajectory

\[
x_m(h) = x_0 + r_T \left(\sqrt{\frac{h^2}{r_T^2}} + 1 - 1\right)
\]

with

\[
r_T = \frac{R_{\text{NIP}}}{2 \sin \alpha}
\]
CRS-based limited-aperture migration

Motivation

CRS-based approach

Alternative approach

Synthetic data

Real land data

Conclusions
CRS-based limited-aperture migration

Available so far
CRS-based limited-aperture migration

Available so far

- size of aperture for offset zero
CRS-based limited-aperture migration

Available so far

- size of aperture for offset zero
- extrapolation of stationary point to finite offset
CRS-based limited-aperture migration

Available so far

- size of aperture for offset zero
- extrapolation of stationary point to finite offset

Still missing
CRS-based limited-aperture migration

Available so far

- size of aperture for offset zero
- extrapolation of stationary point to finite offset

Still missing

- extrapolation of projected Fresnel zone
 - less critical
CRS-based limited-aperture migration

Available so far

- size of aperture for offset zero
- extrapolation of stationary point to finite offset

Still missing

- extrapolation of projected Fresnel zone ➔ less critical
- stationary point not yet related to migrated image point ➔ crucial!
CRS-based limited-aperture migration

Available so far
- size of aperture for offset zero
- extrapolation of stationary point to finite offset

Still missing
- extrapolation of projected Fresnel zone ➞ less critical
- stationary point not yet related to migrated image point ➞ crucial!

current solution:
application of tangency criterion for offset zero
migration operator dip \uparrow reflection event dip
Alternative approach

Problems with tangency criterion
▶ reflection event dip not available/reliable at all locations
▶ migration operator dip has to be calculated numerically from GFTs (depth migration)
¯ determination of the stationary point not sufficiently solved
alternative approach will be tested:
vector diffraction stack i.e. multiple application of Kirchhoff migration with different weight functions (e.g., Tygel; 1993)
Alternative approach

Problems with tangency criterion
Alternative approach

Problems with tangency criterion
 ▶ reflection event dip not available/reliable at all locations
Alternative approach

Problems with tangency criterion

- reflection event dip not available/reliable at all locations
- migration operator dip has to be calculated numerically from GFTs (depth migration)
Alternative approach

Problems with tangency criterion

- reflection event dip not available/reliable at all locations
- migration operator dip has to be calculated numerically from GFTs (depth migration)
- determination of the stationary point not sufficiently solved
Alternative approach

Problems with tangency criterion

- reflection event dip not available/reliable at all locations
- migration operator dip has to be calculated numerically from GFTs (depth migration)
- determination of the stationary point not sufficiently solved

alternative approach will be tested:

vector diffraction stack

i. e. multiple application of Kirchhoff migration with different weight functions (e. g., Tygel; 1993)
DD stack for
CRS-based
limited-aperture
Kirchhoff depth
migration
I. Veile and J. Mann

Alternative approach

Kirchhoff migration
▶ migrates energy from stationary point to image point
▶ is a linear process
also migrates any superimposed information (with slow lateral variation)

General idea
▶ migrate with unit weight
▶ migrate with superimposed information
ratio of migration results recovers superimposed information at migrated location
Alternative approach

Kirchhoff migration
Alternative approach

Kirchhoff migration

- migrates energy from stationary point to image point
Alternative approach

Kirchhoff migration

- migrates energy from stationary point to image point
- is a linear process
Alternative approach

Kirchhoff migration

- migrates energy from stationary point to image point

- is a linear process
 - also migrates any superimposed information (with slow lateral variation)
Alternative approach

Kirchhoff migration

▶ migrates energy from stationary point to image point

▶ is a linear process

⇒ also migrates any superimposed information (with slow lateral variation)

General idea
Alternative approach

Kirchhoff migration
- migrates energy from stationary point to image point
- is a linear process
 - also migrates any superimposed information (with slow lateral variation)

General idea
- migrate with unit weight
Alternative approach

Kirchhoff migration
 ➤ migrates energy from stationary point to image point
 ➤ is a linear process
 ➡ also migrates any superimposed information (with slow lateral variation)

General idea
 ➤ migrate with unit weight
 ➤ migrate with superimposed information
Alternative approach

Kirchhoff migration

- migrates energy from stationary point to image point

- is a linear process
 - also migrates any superimposed information (with slow lateral variation)

General idea

- migrate with unit weight
- migrate with superimposed information
 - ratio of migration results recovers superimposed information at migrated location
Alternative approach
Alternative approach

Determination of stationary point
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points

Advantages in this context
Alternative approach

Determination of stationary point

► stationary point characterized by trace location
 ➥ trace location serves as migration weight
► ratio of migration results represents locations of stationary points

Advantages in this context

► only required for offset zero
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points

Advantages in this context

- only required for offset zero
 - poststack vector diffraction stack is sufficient
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points

Advantages in this context

- only required for offset zero
 - poststack vector diffraction stack is sufficient
- based on CRS-stacked section with high S/N ratio
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points

Advantages in this context

- only required for offset zero
 - poststack vector diffraction stack is sufficient
- based on CRS-stacked section with high S/N ratio

General problem
Alternative approach

Determination of stationary point
- stationary point characterized by trace location
 - trace location serves as migration weight
- ratio of migration results represents locations of stationary points

Advantages in this context
- only required for offset zero
 - poststack vector diffraction stack is sufficient
- based on CRS-stacked section with high S/N ratio

General problem
- not all image points are associated with actual stationary points
Alternative approach

Determination of stationary point

- stationary point characterized by trace location
 ➤ trace location serves as migration weight
- ratio of migration results represents locations of stationary points

Advantages in this context

- only required for offset zero
 ➤ poststack vector diffraction stack is sufficient
- based on CRS-stacked section with high S/N ratio

General problem

- not all image points are associated with actual stationary points
 ➤ criterion required for identification
Simple synthetic model

Model properties:

- Two horizontal reflectors
- Homogeneous background model

Consequences:
- No GFTs required
- Picking in depth domain trivial
- Stationary point expected to coincide with depth image point
Simple synthetic model

Model properties:

- two horizontal reflectors
Simple synthetic model

Model properties:
- two horizontal reflectors
- homogeneous background model
Simple synthetic model

Model properties:
- two horizontal reflectors
- homogeneous background model

Consequences:
Simple synthetic model

Model properties:
▶ two horizontal reflectors
▶ homogeneous background model

Consequences:
▶ no GFTs required
Simple synthetic model

Model properties:

- two horizontal reflectors
- homogeneous background model

Consequences:

- no GFTs required
- picking in depth domain trivial
Simple synthetic model

Model properties:
- two horizontal reflectors
- homogeneous background model

Consequences:
- no GFTs required
- picking in depth domain trivial
- stationary point expected to coincide with depth image point
Location of stationary point
Displacement of stationary point

Motivation
CRS-based approach
Alternative approach
Synthetic data
Real land data
Conclusions
Displacement error [m] as function of noise level

black: first event, gray: second event
Traces as function of noise level

![Graph showing traces as a function of noise level.](image-url)
Displacement error [m] along wavelet

Motivation

CRS-based approach

Alternative approach

Synthetic data

Real land data

Conclusions
Observations
Observations

- Double diffraction stack in principle applicable
Observations

- Double diffraction stack in principle applicable
- Problems to be addressed:
Observations

- Double diffraction stack in principle applicable
- Problems to be addressed:
 - instability for zero-crossings of wavelet
Observations

- Double diffraction stack in principle applicable
- Problems to be addressed:
 - instability for zero-crossings of wavelet
 - background migration noise
Observations

- Double diffraction stack in principle applicable
- Problems to be addressed:
 - instability for zero-crossings of wavelet
 - background migration noise
 - results only reliable and meaningful along reflection events
Observations

- Double diffraction stack in principle applicable
- Problems to be addressed:
 - instability for zero-crossings of wavelet
 - background migration noise
 - results only reliable and meaningful along reflection events
 ➞ (automated) identification required
Real land data

Acquisition parameters:
Real land data

Acquisition parameters:
- fixed split-spread layout
Real land data

Acquisition parameters:
- fixed split-spread layout
- total line length ≈ 12 km
Real land data

Acquisition parameters:
- fixed split-spread layout
- total line length ≈ 12 km
- shot and receiver spacing 50 m
Real land data

Acquisition parameters:

- fixed split-spread layout
- total line length \(\approx 12 \text{ km} \)
- shot and receiver spacing 50 m
- temporal sampling rate 2 ms
Real land data

Acquisition parameters:
- fixed split-spread layout
- total line length \(\approx 12 \text{ km} \)
- shot and receiver spacing 50 m
- temporal sampling rate 2 ms
- linear upsweep of 10 s from 12 to 100 Hz
Real land data

Acquisition parameters:
- fixed split-spread layout
- total line length \(\approx 12\) km
- shot and receiver spacing 50 m
- temporal sampling rate 2 ms
- linear upsweep of 10 s from 12 to 100 Hz
- standard preprocessing
Real land data

Acquisition parameters:

- fixed split-spread layout
- total line length ≈ 12 km
- shot and receiver spacing 50 m
- temporal sampling rate 2 ms
- linear upsweep of 10 s from 12 to 100 Hz
- standard preprocessing
- see, e.g., Hertweck et al. (2004)
Conventional depth migration
Displacement of stationary point

Depth [km] 0 2 4 6 8 10

Distance [km]

Displacement of stationary point [m]

-400 -300 -200 -100 0 100 200 300 400

Distance of stationary point [m]
Displacement based on trace envelopes
Displacement after event-consistent smoothing
<table>
<thead>
<tr>
<th>Distance [km]</th>
<th>Depth [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Displacement [m] after event-consistent smoothing
Displacement [m] after event-consistent smoothing
Displacement [m] after event-consistent smoothing

![Image of displacement after event-consistent smoothing](image-url)
Displacement [m] after event-consistent smoothing
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- Calculate envelopes of analytic signal
- No more zero-crossing problems!
- Calculate ratio of double diffraction stack results
- Perform partial “CRS stack” in depth domain
- Identification of events
- Provides subset of “wavefield attributes”
- Perform event-consistent smoothing
- Attenuates migration noise
Workflow to calculate stationary points

- Weight input data with trace location
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- calculate envelopes of analytic signal
 ➡ no more zero-crossing problems!
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- calculate envelopes of analytic signal
 ➔ no more zero-crossing problems!
- Calculate ratio of double diffraction stack results
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- calculate envelopes of analytic signal
 ➡ no more zero-crossing problems!
- Calculate ratio of double diffraction stack results
- Perform partial “CRS stack” in depth domain
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- calculate envelopes of analytic signal
 - no more zero-crossing problems!
- Calculate ratio of double diffraction stack results
- Perform partial “CRS stack” in depth domain
 - identification of events
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- calculate envelopes of analytic signal
 ➞ no more zero-crossing problems!
- Calculate ratio of double diffraction stack results
- Perform partial “CRS stack” in depth domain
 - identification of events
 - provides subset of “wavefield attributes”
Workflow to calculate stationary points

- Weight input data with trace location
- Perform double diffraction stack
- calculate envelopes of analytic signal
 ➡️ no more zero-crossing problems!
- Calculate ratio of double diffraction stack results
- Perform partial “CRS stack” in depth domain
 ▶ identification of events
 ▶ provides subset of “wavefield attributes”
- perform event-consistent smoothing
 ➡️ attenuates migration noise
Dip-based strategy vs. double diffraction stack

Stationary point displacement DB, DDS. PFZ width DB, DDS.
Conclusions & Outlook
Conclusions & Outlook

- Double diffraction stack results more plausible
Conclusions & Outlook

- Double diffraction stack results more plausible
- Dip-based errors tolerable due to near-1D data. Might not hold for more complex structures!
Conclusions & Outlook

- Double diffraction stack results more plausible
- Dip-based errors tolerable due to near-1D data. Might not hold for more complex structures!
- However: large aperture required to capture steep events
Conclusions & Outlook

» Double diffraction stack results more plausible
» Dip-based errors tolerable due to near-1D data. Might not hold for more complex structures!
» However:
 - large aperture required to capture steep events
 ➣ operator aliasing might affect stationary points
Conclusions & Outlook

- Double diffraction stack results more plausible
- Dip-based errors tolerable due to near-1D data. Might not hold for more complex structures!
- However:
 - large aperture required to capture steep events
 - operator aliasing might affect stationary points
 - introduces artifacts in limited-aperture migration (although not subject to operator aliasing itself)
Conclusions & Outlook

- Double diffraction stack results more plausible
- Dip-based errors tolerable due to near-1D data. Might not hold for more complex structures!
- However:
 - large aperture required to capture steep events
 - operator aliasing might affect stationary points
 - introduces artifacts in limited-aperture migration (although not subject to operator aliasing itself)
 - anti-aliasing filter useful during double diffraction stack?
DD stack for CRS-based limited-aperture Kirchhoff depth migration

I. Veile and J. Mann

Motivation
CRS-based approach
Alternative approach
Synthetic data
Real land data
Conclusions